Openspeech Model¶
Openspeech Model¶
- 
class openspeech.models.openspeech_model.OpenspeechModel(configs: omegaconf.dictconfig.DictConfig, tokenizer: openspeech.tokenizers.tokenizer.Tokenizer)[source]¶
- Super class of openspeech models. - Note - Do not use this class directly, use one of the sub classes. - Parameters
- configs (DictConfig) – configuration set. 
- tokenizer (Tokenizer) – tokenizer is in charge of preparing the inputs for a model. 
 
 - Inputs:
- inputs (torch.FloatTensor): A input sequence passed to encoders. Typically for inputs this will be a padded FloatTensor of size - (batch, seq_length, dimension). input_lengths (torch.LongTensor): The length of input tensor.- (batch)
 - Returns
- Result of model predictions. 
- Return type
- outputs (dict) 
 - 
configure_criterion(criterion_name: str) → torch.nn.modules.module.Module[source]¶
- Configure criterion for training. - Parameters
- criterion_name (str) – name of criterion 
- Returns
- criterion for training 
- Return type
- criterion (nn.Module) 
 
 - 
configure_optimizers()[source]¶
- Choose what optimizers and learning-rate schedulers to use in your optimization. - Returns
- Dictionary - The first item has multiple optimizers, and the second has multiple LR schedulers (or multiple - lr_dict).
 
 
 - 
forward(inputs: torch.FloatTensor, input_lengths: torch.LongTensor) → Dict[str, torch.Tensor][source]¶
- Forward propagate a inputs and targets pair for inference. - Inputs:
- inputs (torch.FloatTensor): A input sequence passed to encoders. Typically for inputs this will be a padded FloatTensor of size - (batch, seq_length, dimension). input_lengths (torch.LongTensor): The length of input tensor.- (batch)
 - Returns
- Result of model predictions. 
- Return type
- outputs (dict) 
 
 - 
info(dictionary: dict) → None[source]¶
- Logging information from dictionary. - Parameters
- dictionary (dict) – dictionary contains information. 
 
 - 
test_step(batch: tuple, batch_idx: int)[source]¶
- Forward propagate a inputs and targets pair for test. - Inputs:
- batch (tuple): A train batch contains inputs, targets, input_lengths, target_lengths batch_idx (int): The index of batch 
 - Returns
- loss for training 
- Return type
- loss (torch.Tensor) 
 
 - 
training_step(batch: tuple, batch_idx: int)[source]¶
- Forward propagate a inputs and targets pair for training. - Inputs:
- batch (tuple): A train batch contains inputs, targets, input_lengths, target_lengths batch_idx (int): The index of batch 
 - Returns
- loss for training 
- Return type
- loss (torch.Tensor) 
 
 - 
validation_step(batch: tuple, batch_idx: int)[source]¶
- Forward propagate a inputs and targets pair for validation. - Inputs:
- batch (tuple): A train batch contains inputs, targets, input_lengths, target_lengths batch_idx (int): The index of batch 
 - Returns
- loss for training 
- Return type
- loss (torch.Tensor)