DeepSpeech2¶
DeepSpeech2 Model¶
- 
class openspeech.models.deepspeech2.model.DeepSpeech2Model(configs: omegaconf.dictconfig.DictConfig, tokenizer: openspeech.tokenizers.tokenizer.Tokenizer)[source]¶
- Deep Speech2 model with configurable encoders and decoders. Paper: https://arxiv.org/abs/1512.02595 - Parameters
- configs (DictConfig) – configuration set. 
- tokenizer (Tokenizer) – tokenizer is in charge of preparing the inputs for a model. 
 
 - Inputs:
- inputs (torch.FloatTensor): A input sequence passed to encoders. Typically for inputs this will be a padded FloatTensor of size - (batch, seq_length, dimension). input_lengths (torch.LongTensor): The length of input tensor.- (batch)
 - Returns
- Result of model predictions that contains y_hats, logits, output_lengths 
- Return type
- outputs (dict) 
 - 
forward(inputs: torch.Tensor, input_lengths: torch.Tensor) → Dict[str, torch.Tensor][source]¶
- Forward propagate a inputs and targets pair for inference. - Inputs:
- inputs (torch.FloatTensor): A input sequence passed to encoders. Typically for inputs this will be a padded FloatTensor of size - (batch, seq_length, dimension). input_lengths (torch.LongTensor): The length of input tensor.- (batch)
 - Returns
- Result of model predictions that contains y_hats, logits, output_lengths 
- Return type
- outputs (dict) 
 
 - 
test_step(batch: tuple, batch_idx: int) → collections.OrderedDict[source]¶
- Forward propagate a inputs and targets pair for test. - Inputs:
- batch (tuple): A train batch contains inputs, targets, input_lengths, target_lengths batch_idx (int): The index of batch 
 - Returns
- loss for training 
- Return type
- loss (torch.Tensor) 
 
 - 
training_step(batch: tuple, batch_idx: int) → collections.OrderedDict[source]¶
- Forward propagate a inputs and targets pair for training. - Inputs:
- batch (tuple): A train batch contains inputs, targets, input_lengths, target_lengths batch_idx (int): The index of batch 
 - Returns
- loss for training 
- Return type
- loss (torch.Tensor) 
 
 - 
validation_step(batch: tuple, batch_idx: int) → collections.OrderedDict[source]¶
- Forward propagate a inputs and targets pair for validation. - Inputs:
- batch (tuple): A train batch contains inputs, targets, input_lengths, target_lengths batch_idx (int): The index of batch 
 - Returns
- loss for training 
- Return type
- loss (torch.Tensor) 
 
 
DeepSpeech2 Configuration¶
- 
class openspeech.models.deepspeech2.configurations.DeepSpeech2Configs(model_name: str = 'deepspeech2', rnn_type: str = 'gru', num_rnn_layers: int = 5, rnn_hidden_dim: int = 1024, dropout_p: float = 0.3, bidirectional: bool = True, activation: str = 'hardtanh', optimizer: str = 'adam')[source]¶
- This is the configuration class to store the configuration of a - DeepSpeech2.- It is used to initiated an DeepSpeech2 model. - Configuration objects inherit from :class: ~openspeech.dataclass.configs.OpenspeechDataclass. - Parameters
- model_name (str) – Model name (default: deepspeech2) 
- num_rnn_layers (int) – The number of rnn layers. (default: 5) 
- rnn_hidden_dim (int) – The hidden state dimension of rnn. (default: 1024) 
- dropout_p (float) – The dropout probability of model. (default: 0.3) 
- bidirectional (bool) – If True, becomes a bidirectional encoders (default: True) 
- rnn_type (str) – Type of rnn cell (rnn, lstm, gru) (default: gru) 
- activation (str) – Type of activation function (default: str) 
- optimizer (str) – Optimizer for training. (default: adam)