RNN Transducer Model¶
RNN Transducer Model¶
- 
class openspeech.models.rnn_transducer.model.RNNTransducerModel(configs: omegaconf.dictconfig.DictConfig, tokenizer: openspeech.tokenizers.tokenizer.Tokenizer)[source]¶
- RNN-Transducer are a form of sequence-to-sequence models that do not employ attention mechanisms. Unlike most sequence-to-sequence models, which typically need to process the entire input sequence (the waveform in our case) to produce an output (the sentence), the RNN-T continuously processes input samples and streams output symbols, a property that is welcome for speech dictation. In our implementation, the output symbols are the characters of the alphabet. - Parameters
- configs (DictConfig) – configuration set. 
- tokenizer (Tokenizer) – tokenizer is in charge of preparing the inputs for a model. 
 
 - Inputs:
- inputs (torch.FloatTensor): A input sequence passed to encoders. Typically for inputs this will be a padded FloatTensor of size - (batch, seq_length, dimension).
- input_lengths (torch.LongTensor): The length of input tensor. - (batch)
 
 - Returns
- Result of model predictions. 
- Return type
- outputs (dict) 
 
RNN Transducer Configuration¶
- 
class openspeech.models.rnn_transducer.configurations.RNNTransducerConfigs(model_name: str = 'rnn_transducer', encoder_hidden_state_dim: int = 320, decoder_hidden_state_dim: int = 512, num_encoder_layers: int = 4, num_decoder_layers: int = 1, encoder_dropout_p: float = 0.2, decoder_dropout_p: float = 0.2, bidirectional: bool = True, rnn_type: str = 'lstm', output_dim: int = 512, optimizer: str = 'adam')[source]¶
- This is the configuration class to store the configuration of a - RNNTransducer.- It is used to initiated an RNNTransducer model. - Configuration objects inherit from :class: ~openspeech.dataclass.configs.OpenspeechDataclass. - Parameters
- model_name (str) – Model name (default: transformer_transducer) 
- encoder_hidden_state_dim (int) – Hidden state dimension of encoder (default: 312) 
- decoder_hidden_state_dim (int) – Hidden state dimension of decoder (default: 512) 
- num_encoder_layers (int) – The number of encoder layers. (default: 4) 
- num_decoder_layers (int) – The number of decoder layers. (default: 1) 
- encoder_dropout_p (float) – The dropout probability of encoder. (default: 0.2) 
- decoder_dropout_p (float) – The dropout probability of decoder. (default: 0.2) 
- bidirectional (bool) – If True, becomes a bidirectional encoders (default: True) 
- rnn_type (str) – Type of rnn cell (rnn, lstm, gru) (default: lstm) 
- output_dim (int) – dimension of model output. (default: 512) 
- optimizer (str) – Optimizer for training. (default: adam)