Source code for openspeech.models.transformer.configurations

# MIT License
#
# Copyright (c) 2021 Soohwan Kim and Sangchun Ha and Soyoung Cho
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

from dataclasses import dataclass, field

from openspeech.dataclass.configurations import OpenspeechDataclass


[docs]@dataclass class TransformerConfigs(OpenspeechDataclass): r""" This is the configuration class to store the configuration of a :class:`~openspeech.models.Transformer`. It is used to initiated an `Transformer` model. Configuration objects inherit from :class: `~openspeech.dataclass.configs.OpenspeechDataclass`. Args: model_name (str): Model name (default: transformer) d_model (int): Dimension of model. (default: 512) d_ff (int): Dimenstion of feed forward network. (default: 2048) num_attention_heads (int): The number of attention heads. (default: 8) num_encoder_layers (int): The number of encoder layers. (default: 12) num_decoder_layers (int): The number of decoder layers. (default: 6) encoder_dropout_p (float): The dropout probability of encoder. (default: 0.3) decoder_dropout_p (float): The dropout probability of decoder. (default: 0.3) ffnet_style (str): Style of feed forward network. (ff, conv) (default: ff) max_length (int): Max decoding length. (default: 128) teacher_forcing_ratio (float): The ratio of teacher forcing. (default: 1.0) joint_ctc_attention (bool): Flag indication joint ctc attention or not (default: False) optimizer (str): Optimizer for training. (default: adam) """ model_name: str = field( default="transformer", metadata={"help": "Model name"} ) d_model: int = field( default=512, metadata={"help": "Dimension of model."} ) d_ff: int = field( default=2048, metadata={"help": "Dimenstion of feed forward network."} ) num_attention_heads: int = field( default=8, metadata={"help": "The number of attention heads."} ) num_encoder_layers: int = field( default=12, metadata={"help": "The number of encoder layers."} ) num_decoder_layers: int = field( default=6, metadata={"help": "The number of decoder layers."} ) encoder_dropout_p: float = field( default=0.3, metadata={"help": "The dropout probability of encoder."} ) decoder_dropout_p: float = field( default=0.3, metadata={"help": "The dropout probability of decoder."} ) ffnet_style: str = field( default="ff", metadata={"help": "Style of feed forward network. (ff, conv)"} ) max_length: int = field( default=128, metadata={"help": "Max decoding length."} ) teacher_forcing_ratio: float = field( default=1.0, metadata={"help": "The ratio of teacher forcing."} ) joint_ctc_attention: bool = field( default=False, metadata={"help": "Flag indication joint ctc attention or not"} ) optimizer: str = field( default="adam", metadata={"help": "Optimizer for training."} )
[docs]@dataclass class JointCTCTransformerConfigs(OpenspeechDataclass): r""" This is the configuration class to store the configuration of a :class:`~openspeech.models.JointCTCTransformer`. It is used to initiated an `JointCTCTransformer` model. Configuration objects inherit from :class: `~openspeech.dataclass.configs.OpenspeechDataclass`. Args: model_name (str): Model name (default: joint_ctc_transformer) extractor (str): The CNN feature extractor. (default: conv2d_subsample) d_model (int): Dimension of model. (default: 512) d_ff (int): Dimenstion of feed forward network. (default: 2048) num_attention_heads (int): The number of attention heads. (default: 8) num_encoder_layers (int): The number of encoder layers. (default: 12) num_decoder_layers (int): The number of decoder layers. (default: 6) encoder_dropout_p (float): The dropout probability of encoder. (default: 0.3) decoder_dropout_p (float): The dropout probability of decoder. (default: 0.3) ffnet_style (str): Style of feed forward network. (ff, conv) (default: ff) max_length (int): Max decoding length. (default: 128) teacher_forcing_ratio (float): The ratio of teacher forcing. (default: 1.0) joint_ctc_attention (bool): Flag indication joint ctc attention or not (default: True) optimizer (str): Optimizer for training. (default: adam) """ model_name: str = field( default="joint_ctc_transformer", metadata={"help": "Model name"} ) extractor: str = field( default="conv2d_subsample", metadata={"help": "The CNN feature extractor."} ) d_model: int = field( default=512, metadata={"help": "Dimension of model."} ) d_ff: int = field( default=2048, metadata={"help": "Dimenstion of feed forward network."} ) num_attention_heads: int = field( default=8, metadata={"help": "The number of attention heads."} ) num_encoder_layers: int = field( default=12, metadata={"help": "The number of encoder layers."} ) num_decoder_layers: int = field( default=6, metadata={"help": "The number of decoder layers."} ) encoder_dropout_p: float = field( default=0.3, metadata={"help": "The dropout probability of encoder."} ) decoder_dropout_p: float = field( default=0.3, metadata={"help": "The dropout probability of decoder."} ) ffnet_style: str = field( default="ff", metadata={"help": "Style of feed forward network. (ff, conv)"} ) max_length: int = field( default=128, metadata={"help": "Max decoding length."} ) teacher_forcing_ratio: float = field( default=1.0, metadata={"help": "The ratio of teacher forcing. "} ) joint_ctc_attention: bool = field( default=True, metadata={"help": "Flag indication joint ctc attention or not"} ) optimizer: str = field( default="adam", metadata={"help": "Optimizer for training."} )
[docs]@dataclass class TransformerWithCTCConfigs(OpenspeechDataclass): r""" This is the configuration class to store the configuration of a :class:`~openspeech.models.TransformerWithCTC`. It is used to initiated an `TransformerWithCTC` model. Configuration objects inherit from :class: `~openspeech.dataclass.configs.OpenspeechDataclass`. Args: model_name (str): Model name (default: transformer_with_ctc) extractor (str): The CNN feature extractor. (default: vgg) d_model (int): Dimension of model. (default: 512) d_ff (int): Dimenstion of feed forward network. (default: 2048) num_attention_heads (int): The number of attention heads. (default: 8) num_encoder_layers (int): The number of encoder layers. (default: 12) encoder_dropout_p (float): The dropout probability of encoder. (default: 0.3) ffnet_style (str): Style of feed forward network. (ff, conv) (default: ff) optimizer (str): Optimizer for training. (default: adam) """ model_name: str = field( default="transformer_with_ctc", metadata={"help": "Model name"} ) d_model: int = field( default=512, metadata={"help": "Dimension of model."} ) d_ff: int = field( default=2048, metadata={"help": "Dimenstion of feed forward network."} ) num_attention_heads: int = field( default=8, metadata={"help": "The number of attention heads."} ) num_encoder_layers: int = field( default=12, metadata={"help": "The number of encoder layers."} ) encoder_dropout_p: float = field( default=0.3, metadata={"help": "The dropout probability of encoder."} ) ffnet_style: str = field( default="ff", metadata={"help": "Style of feed forward network. (ff, conv)"} ) optimizer: str = field( default="adam", metadata={"help": "Optimizer for training."} )
[docs]@dataclass class VGGTransformerConfigs(OpenspeechDataclass): r""" This is the configuration class to store the configuration of a :class:`~openspeech.models.VGGTransformer`. It is used to initiated an `VGGTransformer` model. Configuration objects inherit from :class: `~openspeech.dataclass.configs.OpenspeechDataclass`. Args: model_name (str): Model name (default: vgg_transformer) extractor (str): The CNN feature extractor. (default: vgg) d_model (int): Dimension of model. (default: 512) d_ff (int): Dimenstion of feed forward network. (default: 2048) num_attention_heads (int): The number of attention heads. (default: 8) num_encoder_layers (int): The number of encoder layers. (default: 12) num_decoder_layers (int): The number of decoder layers. (default: 6) encoder_dropout_p (float): The dropout probability of encoder. (default: 0.3) decoder_dropout_p (float): The dropout probability of decoder. (default: 0.3) ffnet_style (str): Style of feed forward network. (ff, conv) (default: ff) max_length (int): Max decoding length. (default: 128) teacher_forcing_ratio (float): The ratio of teacher forcing. (default: 1.0) joint_ctc_attention (bool): Flag indication joint ctc attention or not (default: False) optimizer (str): Optimizer for training. (default: adam) """ model_name: str = field( default="vgg_transformer", metadata={"help": "Model name"} ) extractor: str = field( default="vgg", metadata={"help": "The CNN feature extractor."} ) d_model: int = field( default=512, metadata={"help": "Dimension of model."} ) d_ff: int = field( default=2048, metadata={"help": "Dimenstion of feed forward network."} ) num_attention_heads: int = field( default=8, metadata={"help": "The number of attention heads."} ) num_encoder_layers: int = field( default=12, metadata={"help": "The number of encoder layers."} ) num_decoder_layers: int = field( default=6, metadata={"help": "The number of decoder layers."} ) encoder_dropout_p: float = field( default=0.3, metadata={"help": "The dropout probability of encoder."} ) decoder_dropout_p: float = field( default=0.3, metadata={"help": "The dropout probability of decoder."} ) ffnet_style: str = field( default="ff", metadata={"help": "Style of feed forward network. (ff, conv)"} ) max_length: int = field( default=128, metadata={"help": "Max decoding length."} ) teacher_forcing_ratio: float = field( default=1.0, metadata={"help": "The ratio of teacher forcing. "} ) joint_ctc_attention: bool = field( default=False, metadata={"help": "Flag indication joint ctc attention or not"} ) optimizer: str = field( default="adam", metadata={"help": "Optimizer for training."} )